

Future Challenges in Gas Turbine Technology

2015 Aerospace Technology Semina Singapore, 2 April 2013

Lars Seumenicht, Rolls-Royce Deutschland

© 2015 Rolls-Royce Deutschland Ltd & Co KG

The information in this document is the property of Rolls-Royce and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce.

This information is given in good faith based upon the latest information available to Rolls-Royce, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce or any of its subsidiary or associated companies.

Content

Rolls-Royce

Propulsion System developments

Summary

Background on Rolls-Royce

Power Systems for air, land and sea

Marine

A leading position in the Civil market

- 13,000 engine installed in over 30 aircraft types
- 380 airline and leasing customers
- Over 30 million flying hours accumulated (2013)
- TotalCare[™] and CorporateCare[™] are market leading service programmes

A leading position in the Defence market 7

- 16,000 engines installed in 24 aircraft types & 7,000 helicopter engines in operation
- 160 global military customers in 103 nations
- MissionCare[™] offers similar services as in the commercial world

Seletar Campus

- Over 750 staff
- 65,000 sqm facilities on 154,000 sqm site
- S\$700m investment

<u>HUB</u>

- Advanced Technology Centre
- Regional Training Centre
- Energy Asia HQ
 - Corporate Shared Services
 - 400 staff capacity
 - 1st occupancy in 2011

Wide Chord Fan Blade manufacturing facility

- 7600 Trent fan blade capacity
- 26,500m² production floor
- Multiple Trent engine fan blade capability
 - Trent 900, 1000, XWB
- 1st production fan blades in 2013

Trent Aero Engine Assembly & Test facility

- 250 Trent engine build capacity
- 19,500m² assembly hall & 7,000m² Test Bed
- Multiple Trent engine capacity
 - Trent 900 & 1000
- Test capacity: 140" fan diameter
- 1st production engine in 2012

Customer Requirements

Challenges to consider ...

Requirements

Propulsion System manufactures face continuous demands from both airframer. system integrators and both civil / military operators to –

- 1. provide **much more electrical power** for (mission) equipment, sensors and systems;
- 2. retain their investment into engines affordable over the asset life-cycle;
- 3. make engines easier to maintain, repair and upgrade;
- 4. address the **environmental impact**, incl. becoming even more fuel efficient

and in any case: more thrust or power.

Propulsion Systems - Requirements

Aircraft Power Requirements: Manned & Unmanned Vehicles

Increased electrical off-take

Health Management (EHM), Repairability

SU3

Higher Efficiency

13

Thermal Management

More compact, lighter and efficient Gas Turbines

Higher Surviveability

Technology Developments for Gas Turbines

The more electric engine

Conventional

Rolls-Royce proprietary information

More electric

Trent XWB – adv. technology for A350 ¹⁶

Lighter, more compact, higher efficiency 17

Alternative Fuels

energy density fuel specification

CO₂ benefit Food / water

mass production global distribution

Evaluation of several Fischer-Tropsch synthesized fuels is on-going

Bio-Fuels yield a long-term potential

18

Progress in Gas Turbine Technology

Materials

Improved hollow **Blisks**

Improved 3D aerodynamics

Unit Costs

Innovative cost efficient manufacturing

Metal Matrix Composite Blisks

Architecture and **Aerodynamics**

Vaneless counter-rotating Turbines

Ceramic Metal Composites (CMC) High temperature resistant alloys Air bearings, Magnetic bearings

Variable Cycles

Precision-Casting

Laser drilling

5-axis CNC machining

Laser cladding

19

Progress in turbine materials and technology

20

Metal Matrix Composites

ĺ,

Temperature (Deg C)

Weight reduction for Compressor modules

Conventionally bladed Disk

Blisk – up to 30% weight reduction

Bling – Ti MMC – more than 30% weight reduction

Blisk Repair

- Repair processes are inevitable pre-conditions for economically viable use of BLISK components
- Blending of damaged areas remains the preferred solution, until the repair becomes no longer viable
- Rolls-Royce has developed a Laser-cladding process using Titanium powder to repair damaged areas

Laser in Position

Damaged material removed

New material deposited

Aero-Mechanically Optimised Blisk (AMOB)

- Replacement of the existing blade core with a viscoelastic dampener.
- V-E material absorbs the energy from stresses, this reduces the amplitude of a given same exitation.
- The high damping capability >90% in higher vibration modes – allows thinner and hence lighter aerofoils

23

Integrated Power Systems

 Intelligent combination of propulsion, thermal management and electrical power generation

Mantis UAS Demonstrator

 UAS demonstrators already used for trials

Taranis UCAS Demonstrator

HALE hybrid-electric gas turbine

Unmanned Combat Air System (UCAS) 26

'Intelligent, stealth and more electric'

- Compact gas turbine
- Innovative Integration shaped ducts, RAM, improved cooling
- Intelligent controls
- **Future Technologies**
- Advanced gel fuels (storage at higher temperatures w/o coking)
- Thermo-electrical power generation (reduced IFR signature and higher electrical offtake)

Propulsion influences UCAS shape

27

Rolls-Royce

Comprehensive Maintenance Services

28

MissionCare[™] vs Time & Material

Compared to Time&Material arrangements, MissionCare[™] offers customers:

- budgeting predictability over a long period
- greater value

Exemplary comparision of cost profiles over 10 years – simplified to outline the difference:

Rolls-Royce

Conclusion

- Aircraft will continue to rely upon Gas Turbines unbeatable power density
- There is still potential to achieve further Gas Turbine Technology improvements – however, the cost are increasing
 - Thrust efficiency (e.g. Ultra high bypass ratio / Geared Fan and Open Rotor)
- > Next to the Gas Turbine, the entire platform should be optimised
 - Integrated Power Systems intelligent and more autonomous
 - Heat exchanger and Thermal management
 - Stealth and Cruise at high Mach numbers
- Further consolidation of the engine OEM landscape is inevitable – to bundle and focus resources and activities

© Carly Andersson MCC

trusted to deliver excellence

